Equazioni irrazionali Esercizio 4

Quarto esercizio sulle equazioni irrazionali esercizio. Risolvi la seguente equazione irrazionale: Questa equazione è del secondo tipo perchè al secondo membro è presente un polinomio con un incontrita in x. Per risolvere l'intera disequazione bisogna quindi risolvere il sistema: Concentriamoci ora sulla risoluzione della seconda equazione: Poichè il delta è positivo possiamo affermare che questa equazione ha due soluzioni reali

» Read more

Equazioni irrazionali Esercizio 3

Primo esercizio sulle equazioni irrazionali. Risolvi la seguente equazione irrazionale: (equazioni irrazionali esercizio 3) Questa equazione è del primo tipo ed è possibile perchè il termine a destra dell'uguaglianza è positivo. Infatti una radice quadrata non può mai essere uguale ad un termine negativo. Procediamo a questo punto elevando entrambi i membri dell'equazione al quadrato: Facendo un raccoglimento totale dei

» Read more

Equazioni irrazionali Esercizio 2

Primo esercizio sulle equazioni irrazionali. Risolvi la seguente equazione irrazionale: Questa equazione è del primo tipo ed è possibile perchè il termine a destra dell'uguaglianza è positivo. Infatti una radice quadrata non può mai essere uguale ad un termine negativo. Procediamo a questo punto elevando entrambi i membri dell'equazione al quadrato: L'equazione di secondo grado è pura e possiamo trovare le

» Read more
1 2